Combining Particle filter and Population-Based Metaheuristics for Visual Articulated Motion Tracking
نویسندگان
چکیده
Visual tracking of articulated motion is a complex task with high computational costs. Because of the fact that articulated objects are usually represented as a set of linked limbs, tracking is performed with the support of a model. Model-based tracking allows determining object pose in an effortless way and handling occlusions. However, the use of articulated models generates a multidimensional state-space and, therefore, the tracking becomes computationally very expensive or even infeasible. Due to the dynamic nature of the problem, some sequential estimation algorithms like particle filters are usually applied to visual tracking. Unfortunately, particle filter fails in high dimensional estimation problems such as articulated objects or multiple object tracking. These problems are called dynamic optimization problems. Metaheuristics, which are high level general strategies for designing heuristics procedures, have emerged for solving many real world combinatorial problems as a way to efficiently and effectively exploring the problem search space. Path relinking (PR) and scatter search (SS) are evolutionary metaheuristics successfully applied to several hard optimization problems. PRPF and SSPF algorithms respectively hybridize both, particle filter and these two population-based metaheuristic schemes. In this paper, We present and compare two different hybrid algorithms called Path Relinking Particle Filter (PRPF) and Scatter Search Particle Filter (SSPF), applied to 2D human motion tracking. Experimental results show the proposed algorithms increase the performance of standard particle filters.
منابع مشابه
Combining Differential Evolution with Particle Filtering for Articulated Hand Tracking from Single Depth Images
Tracking articulated hand motion from visual observations is challenging mainly due to the high dimensionality of the state space. Dense sampling is difficult to be performed in such high-dimensional space, so the traditional particle filtering can’t track articulated motion well. In this paper, we propose a new algorithm by combining differential evolution with a particle filter, to track the ...
متن کاملArticulated Body Motion Tracking by Combined Particle Swarm Optimization and Particle Filtering
This paper proposes the use of a particle filter with embedded particle swarm optimization as an efficient and effective way of dealing with 3d model-based human body tracking. A particle swarm optimization algorithm is utilized in the particle filter to shift the particles toward more promising configurations of the human model. The algorithm is shown to be able of tracking full articulated bo...
متن کاملMarkerless Human Motion Tracking Using Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization
The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the ...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملAn efficient stochastic framework for 3D human motion tracking
In this paper, we present a stochastic framework for articulated 3D human motion tracking. Tracking full body human motion is a challenging task, because the tracking performance normally suffers from several issues such as self-occlusion, foreground segmentation noise and high computational cost. In our work, we use explicit 3D reconstructions of the human body based on a visual hull algorithm...
متن کامل